Template estimation form unlabeled point set data and surfaces for Computational Anatomy

نویسندگان

  • Joan Glaunès
  • Sarang Joshi
چکیده

A central notion in Computational Anatomy is the generation of registration maps,mapping a large set of anatomical data to a common coordinate system to study intra-population variability and inter-population differences. In previous work [1, 2] methods for estimating the common coordinate system or the template given a collection imaging data were presented based on the notion of Fréchet mean estimation using a metric on the space of diffeomorphisms. In this paper we extend the methodology to the estimation of a template given a collection of unlabeled point sets and surfaces. Using a representation of points and surfaces as currents a Reproducing Kernel Hilbert Space (RKHS) norm is induced on the space of Borel measures. Using this norm and a metric on the space of diffeomorphisms the template estimation problem is possed as a minimum mean squared error estimation problem. An efficient alternating conjugate gradient decent algorithm is derived and results exemplifying the methodology are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Bayesian Generative Model for Surface Template Estimation

3D surfaces are important geometric models for many objects of interest in image analysis and Computational Anatomy. In this paper, we describe a Bayesian inference scheme for estimating a template surface from a set of observed surface data. In order to achieve this, we use the geodesic shooting approach to construct a statistical model for the generation and the observations of random surface...

متن کامل

Can Wavelet Denoising Improve Motor Unit Potential Template Estimation?

Background: Electromyographic (EMG) signals obtained from a contracted muscle contain valuable information on its activity and health status. Much of this information lies in motor unit potentials (MUPs) of its motor units (MUs), collected during the muscle contraction. Hence, accurate estimation of a MUP template for each MU is crucial. Objective: To investigate the possibility of improv...

متن کامل

Bayesian Atlas Estimation for the Variability Analysis of Shape Complexes

In this paper we propose a Bayesian framework for multiobject atlas estimation based on the metric of currents which permits to deal with both curves and surfaces without relying on point correspondence. This approach aims to study brain morphometry as a whole and not as a set of different components, focusing mainly on the shape and relative position of different anatomical structures which is...

متن کامل

A Stochastic Large Deformation Model for Computational Anatomy

In the study of shapes of human organs using computational anatomy, variations are found to arise from inter-subject anatomical differences, disease-specific effects, and measurement noise. This paper introduces a stochastic model for incorporating random variations into the Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework. By accounting for randomness in a particular setup whic...

متن کامل

Bayesian template estimation in computational anatomy

Templates play a fundamental role in Computational Anatomy. In this paper, we present a Bayesian model for template estimation. It is assumed that observed images I(1), I(2),...,I(N) are generated by shooting the template J through Gaussian distributed random initial momenta theta(1), theta(2),...,theta(N). The template is J modeled as a deformation from a given hypertemplate J(0) with initial ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006